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ABSTRACT Despite widespread applications in
biomedical research, the role of models and model-
ing is often controversial and ill understood. It is
usual to find that fundamental definitions, axioms,
and postulates used in the modeling process have be-
come tacit assumptions. What is essential, however,
is a clear vision of the fundamental principles of
modeling. This is even more compelling for new and
emerging interdisciplinary fields that use techniques
from previously separate scientific disciplines. This
article outlines and reviews the central nature and
philosophy of modeling, the rules that govern it, and
its underlying key integral relationship to the ‘scien-
tific method’. A comprehensive understanding of
these issues is indispensable to successful research
and meaningful progress in all facets of biomedi-
cine.—Massoud, T. F., Hademenos, G. ]J., Young,
W. L., Gao, E., Pile-Spellman, J., Vinuela, F. Princi-
ples and philosophy of modeling in biomedical re-
search. FASEB J. 12, 275-285 (1998)
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To muddle or to model, that is the question.
A. A. Verveen (1)

Humankind’s discoveries about itself and the sur-
rounding world have created that vast structure of
knowledge we now call ‘science’ (2). The search for
explanations began with humans’ first observation of
the ‘movement’ of the sun. No sooner were the ques-
tions phrased than controversy about the explana-
tions began. For it is of the very nature of the
scientific mind to question established patterns of
knowledge, to suggest new explanations, and to defy
those who claim to know better (2). Today, scientific
research is looked upon as synonymous with pro-
gress; and without progress, the elaborate structure
of modern life would collapse.
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Models are an indispensable ingredient of the sci-
entific method; as deductively manipulatable con-
structs, they are essential to the evolution of theory
from observation (3). The intention and the result of
a scientific inquiry is to obtain an understanding and
a control of some part of the universe. No significant
part of the universe is sufficiently simple that it can
be grasped and controlled without abstraction. Ab-
straction consists in replacing the part of the universe
under consideration by a model of similar but sim-
pler structure. Models are thus a crucial necessity of
scientific procedure (3) and the modeling process
itself represents the essence of the hypothetico-de-
ductive approach in science (4).

Unfortunately, scientific research is one of those
highly complex and subtle activities that usually re-
main quite unformulated in the minds of those who
practice them (5). This lack of focus not uncom-
monly extends to the creation and use of experimen-
tal models in biomedical research. The act of
modeling (its principles, guidelines, and techniques)
is generalizable, even though the models themselves
are not (6). A number of illuminating treatises on
models are available that offer insight from diverse
points of view (7). However, a single comprehensive
review article on the general principles and key ide-
ologies of experimental modeling is unavailable to
the biomedical community. This work is based on a
number of these previously reported discourses—it is
intended to bring together and highlight the salient
fundamental aspects (the philosophy, nature, pur-
pose, and rationale, relation to the ‘scientific
method’, advantages, limitations, etc.) of the process
of experimental modeling, a comprehensive under-
standing of which is indispensable to successful re-
search in all biomedical disciplines.
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Radiology, Charing Cross Hospital, Imperial College School
of Medicine, University of London, Fulham Palace Rd., Lon-
don W6 8RF, UK.

275



TERMS AND DEFINITIONS

When otherwise stated in this article, the term model
is used synonymously with analog to mean that which
is similar in function but differs in structure and or-
igin from that which is modeled (7). This is a delib-
erate oversimplification, introduced only for the sake
of convenience. However, in this section, a more pro-
found exposition of the diverse terms and definitions
relevant to this discussion is provided.

At the outset it is necessary to clarify that by overt
modeling we mean studies explicitly designed to
complement scientific research, not the tacit model-
ing that always accompanies experimental design,
measurement, description, and interpretation of re-
sults (7). Furthermore, care should be exercised at
all times to maintain the distinction between a nor-
mative model (which describes how the system ought
to operate) and an empirical model (which is based
purely on measured data). Only the latter type must
be used in the scientific method (7).

Dainty (8) states that an analog (a model based on
analogy) involves ‘a simplification of the actual sub-
ject for analysis into sufficiently few elements that a
mathematical or experimental treatment of its be-
havior under any desired conditions may be possi-
ble’; and it ‘crystallizes in one diagram (or piece of
apparatus) the characteristics of a system that other-
wise requires much apparently complex mathemati-
cal or verbal explanation’. Thus, an analog both
simplifies and puts into familiar terms a complicated
phenomenon and hence enables one to think much
more clearly about the subject; things are more ‘in-
tuitively” obvious (8). The use of analogy can be de-
fined as follows (8): ‘if two different phenomena A
and B are described by the same mathematical for-
mulas, quantitative conclusions can be drawn about
the phenomenon A by studying the phenomenon B’.
The apparatus or ‘model’ of B designed to investigate
A by analogy is the analog.

Further insight into the distinction between an an-
alog and a model is offered. According to Kacser (9),
several terms currently in use: ‘hypothesis’, ‘theory’,
‘law’, ‘analog’, and ‘model’ appear to be synonyms
of only ‘analog’ and ‘model’. Analog and model dif-
fer fundamentally from each other. An analog is ‘a
device (in which entities are related to one another)
that can be used for the purposes of making a model’.
A model is ‘a statement or a series of statements in
language’. Models are, therefore, propositions that
may be either verbal or mathematical, in which en-
tities are related according to the rules of a particular
language. Whenever a device is used as an analog, it
is to derive or confirm some form of deductive verbal
system. Why are analogs used and how do they help
in formulating models? We use analogs when we can-
not formulate intuitively the propositions that will
yield the conclusions corresponding to the empirical
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situation. The analog, particularly if it is a human-
made device, is much more amenable to the process
of extracting the logical model than most situations
we encounter. The analog having been constructed
in a known way, should it be found to behave in the
expected manner, is capable of being ‘translated’, so
to speak, into language either verbal or mathemati-
cal. The words ‘hypothesis’, ‘theory’, and ‘law’ have
subtle distinctions among them, but all have the same
logical status as a model insofar as all of them are
propositional in nature and in fact meant for use in
the same way (9).

When we use the term model in biomedical re-
search, we do not necessarily mean an actual appa-
ratus whose appearance or properties are similar to
the system we are studying (10). More often we mean
that we think the properties of the entire system de-
rive from the properties of certain defined constitu-
ent parts, and that from a knowledge of the
functioning of these components and of their inter-
actions with each other, we could give an explanation
of the functioning of the whole that would be more
readily understood than if we tried to describe the
whole at once (10). This definition of a model by
Pringle (10) makes it conceptual rather than actual.
In contrast to actual models whose performance can
be subjected to experimental examinations to deter-
mine their degree of similarity to the original system,
conceptual models have to rely on logic for their jus-
tification. In this case, the ultimate test of validity is
a mathematical one. A conceptual model is satisfac-
tory if the mathematical formulation of its perfor-
mance is identical with that of the original system. It
is not necessary in this instance for the component
elements to be physically/chemically realizable. The
biomedical researcher, however, is often wary of
purely imaginary analytical concepts, and has a nat-
ural tendency to try and visualize component parts
(10). Furthermore, it is rare in biomedical research
to be able to apply the full rigors of a mathematical
test to a conceptual model. More often one has to be
satisfied with a more intuitive test in which: I) the
quantitative features of the overall performance ap-
pear to be explained by the combined properties of
the conceptual units, 2) the qualitative features of the
overall performance appear to be explained by the
combined properties of the conceptual units, and 3)
the quantitative comparison is at least not grossly in
error (10).

PHILOSOPHY AND RATIONALE FOR
MODELING

It is imperative that any scientific research, especially
if it requires an interdisciplinary approach, be
grounded in the philosophy of science and furnished
with the logical tools that permit the translation of
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empirical data into useful knowledge and worthwhile
means of advancement (11).

The purpose of scientific investigation is the accu-
mulation of knowledge about the nature and behav-
ior of the real world (which may be defined as any
and all measurable entities and processes within the
physical universe) (11). In this respect, the making
of models is universal in the search for a consistent
and instructive picture of nature (7). The active use
of models and analogs is necessary because the sub-
ject of investigation is usually too complex to work
with. The complexities may arise from (12): I) the
very large number of interactions of elements whose
individual existence and properties we know or think
we know, or 2) because there is a ‘black box’ in the
system that is inaccessible to us; in fact, it may be
impossible to make direct contact with the subject in
any manner, especially at the time desired. The use
of pure trial and error as a design procedure has long
been far too costly both in time and money (11).
Good science practice dictates that each successive
trial design be based on past experience, which in-
dicates the most efficient direction in which to reach
the next step. Such directed development and pro-
gress results from following the dictates of good ex-
perimental modeling. Certainly the more adequate
the model, the more rapid, will be the approach to
success, and at minimum expenditure (11). Thus,
worthwhile models are predictive: new relevant prop-
erties are deducible from them (7). Furthermore, a
model often suggests constraints that may exist in the
system being modeled. If these constraints are valid,
they can guide subsequent experimental interpreta-
tion. To thus reveal, test, compute, extrapolate, and
predict is to accelerate the process of learning about
the real world (7).

As collected data accrue during scientific research,
it becomes possible to consider different models in
search of some rationale for the evidence (11). These
models may be used to foretell the next observation,
and as subsequent data are gathered it soon becomes
apparent that some models are more beneficial than
others in this way. In fact, it may be possible to choose
a particular model that achieves minimum error to-
ward estimating any previously unobserved datum
point. Having such a model available is the first step
in understanding the observed data. It offers some
knowledge of the conduct of the real world and,
within its degree of precision, may be used to predict
other observations for the purpose of analysis or syn-
thesis. The use of such conceptual models is funda-
mental to scientific thought (11).

Obviously, proper selection of an appropriate
model is critically important. The value and power of
any model as a deductive or inductive tool will de-
pend on the speed and freedom with which the in-
vestigator can visualize relationships in it and
concepts based on it (11). Perhaps the mathematical
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model approaches the ideal most closely in the rig-
orousness of its specifications and the flexibility of its
manipulation in expert hands (11). However, there
may be a number of different, yet equally successful,
models for the same subject of investigation. Having
achieved one model does not earn one the right to
state, ‘this is how it works’. To establish a particular
model above all others is to erect a barrier to open
thought and to the amendment that could someday
further clarify the subject. A model is an invention,
not a discovery. It may prove to be a valid description,
but this is far cry from being the essential truth (11).

All good experiments are good abstractions (3). An
experiment is a question; a precise answer is seldom
obtained if the question is imprecise. Not all biomed-
ical questions are directly accessible to experimenta-
tion. There is a hierarchy of questions whose levels
are determined by the generality of the answers
sought. The low level in the hierarchy deals with a
narrowly restricted and specific phenomenon. As a
rule, high-order, very abstract and general questions
are not directly amenable to an experimental test (3).
They have to be broken down into more specific
terms that can be translated directly into experimen-
tal procedure. There are thus two qualitatively differ-
ent operations involved in formulating research of a
general statement (3): I) moving up and down the
scale of abstraction, and 2) translation of the abstrac-
tion into an experiment. The good experimenter has
particular ability in the second procedure. The the-
orist deals mainly with the first. All scientific experi-
ments begin with closed-box problems: only a few of
the significant variables are identified. Scientific ad-
vancement consists in progressive opening of those
boxes. The successive addition of variables leads to
gradually more elaborate models, and hence to a hi-
erarchy from the relatively simple and highly abstract
models to the more complex and concrete theoreti-
cal pictures. Therefore, at an intermediate stage in
the course of scientific inquiry, the model may
be a heterogeneous assembly of elements, some
treated in detail—specifically or structurally—and
some treated merely with respect to their overall per-
formance: generically or functionally (3).

Each biomedical investigation should begin with a
clearly defined hypothesis. A model is devised to im-
plement this hypothesis and allow investigation (11).
All scientific modeling proceeds from the ‘principle
of contradiction’: ‘A and non-A’ is an invalid state-
ment (4). Beyond this point, the logical force of a
model is exactly the same as that of a scientific hy-
pothesis generally (4): to be logically forceful it must
be capable of undergoing tests that may falsify it (the
well-known criterion of Karl Popper; ref 13). Fur-
thermore, the model should be: I) heuristic in na-
ture (a good ‘fit’ both to the hypothesis and the
available data), i.e., be appropriate to the primary fea-
tures of the real world, 2) permit application of the
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TABLE 1. The purpose of experimental modeling according to Yates (4, 6) and White et al. (15)

Experimental modeling provides:

(1) A systematic and effective way of assembling and codifying current facts and beliefs (knowledge) about a system of interest
(that part of the real world being modeled). This in turn allows:
(a) The exposure of contradictions in data sets or beliefs of this system,
(b) The identification of important parameters of this system,

(c) The identification of the essentials of system structure,

(d) The determination of the overall system sensitivity to variation in each parameter,
(e) The explorations of the major implications of the beliefs about the system (and which implications may be strongly

counterintuitive).

(2) Identification of specific elements or information gaps about the system that must be further quantified, thus leading to
the development of important experiments or quantitative measures.

(3) Prediction of system performance under new conditions.

(4) Prediction of quantitative values of experimentally inaccessible variables or parameters.
(5) A method to test hypotheses rapidly, efficiently, and inexpensively. More specifically, itis a method to demonstrate hypothesis

rejection (when the model fails).

(6) A method to represent the overall current ‘understanding’ and to predict the behavior of the system of interest.

available/desired techniques for its manipulation
(vide infra), and 3) accessible to evaluation by a spec-
ified set of criteria measures (vide infra) (11). Proving
a hypothesis to be untrue is not a complete defeat so
long as the investigation was carried out in a scientific
manner. These negative findings serve to prevent fu-
ture fruitless searches in that same specific direction.
Review of the work may also offer new hypotheses
and even indicate new models that could prove to be
successful in the future (11).

Each model should be an unambiguous expression
of a hypothesis, but not all models are acceptable for
hypothesis testing. The scientific method requires
that the model also be both self-consistent and ‘pub-
lic information’ (11). The former constraint requires
that the same set of fundamental assumptions cover
all aspects of the same set of data under investigation:
the ‘ground rules’ cannot change once the ‘game’
has started. It is this constraint that ‘eliminates sci-
entific expectation of ever finding a centaur or mer-
maid in the real world’” (11). The second constraint
implies that the model can be used by any observer
at any time and, if properly used, with the same con-
sequences. This constraint eliminates models that
may be called ‘visions’ or ‘inspirations’. If a model is
not repeatable in hypothesis testing, its value is nil
(11). In this regard, mathematical models represent
a large class of acceptable models that always yield
the same scientific consequences from a given set of
definitions, axioms, postulates, and data. Further in-
sight into the meaning and uses of models in math-
ematics and the empirical sciences can be found in
the work of Suppes (14).

A significant aspect of a model’s utility lies in its
ability to focus disparate evidence and interpretations
into one coherent view: ‘“‘parsimony of explanation
often leads to revealing unity”” (7). Models are also
valuable to the extent that they raise new questions
and suggest new relationships, perhaps leading to
new experiments that otherwise might not have been
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considered. These are some of the advantages of us-
ing models. Accounts of the overall purpose and spe-
cific advantages of experimental modeling have been
provided previously by Yates (4, 6) and White et al.
(15). Table 1 lists the benefits of using experimental
models. Several of these advantages will become
more apparent upon discussion of the techniques in-
volved in the creation and use of models (vide infra).
What is evident is that the act of modeling leads to
greater knowledge of the real world. Although all
models are in greater or lesser degrees false (8) (vide
infra), this does not necessarily detract from their
value because they often bring out important points
about the real world that would otherwise have been
missed. Even the blatantly false ones have served a
useful purpose: one cannot construct a model with-
out contemplating the problems involved and so ask-
ing new questions and uncovering obscurities that
had previously been accepted passively (8). It bears
reiterating that even if a model should fail as a pre-
dictor of the real world, all is not lost. If the model—
hypothesis has been well stated, it serves to identify a
path unworthy of future attention (11). Further-
more, we sometimes forget the importance of appar-
ently simple, unrealistic, obscure, or more difficult
(than what is being modeled) models in their own
time. The historical value of some of these models
cannot be doubted (7). Humankind’s knowledge of
nature is evolving. Admittedly, a model or a theory
that leads to a dead end is of limited interest, but one
that forms a link in a continuing chain is extremely
valuable, whether or not subsequent events far out-
reach it (7).

NATURE OF MODELS

The biomedical investigator should consider the na-
ture of all potentially applicable models to the area
of research at hand. Several classifications of the fun-
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damental nature of models are available. For a de-
tailed examination of the nature of analytic and
synthetic models (within mathematics), refer to the
work of Rosen (16).

Fogel (11) has stated that models may be analogic
(an analogy of some aspect of the real world) or sym-
bolic (a symbol intended to represent some aspect of
the real world), and descriptive (generated directly by
a measuring transducer) or constructive (constructed
by the investigator). The more analogic the model
the less symbolic, and vice versa. An example of an
analogic descriptive model is an X-ray; it is a model
of internal body structures. On the other hand, an
analogic constructive model may be exemplified by a
computer: it is a human-made model of aspects of
human functioning. Another example is the game of
chess, which was originally intended as a model to
optimize war strategy. Movements of chess pieces pos-
sess a high degree of analogy, and the layout of the
board is a constructed analogic model for the battle-
ground. Language is a symbolic descriptive model for
real-world subjects. Also, the number system is a set
of symbols used to quantify aspects of the real world.
Conversely, vocabulary and its subtle use serve to se-
lect and group the elements of language into more
complex constructed symbolic models. Algebra (the
relating of known and unknown quantities) is an ex-
pression of symbolic constructive models, because
complex algebraic operations may be symbolized in
short form to render an otherwise unwieldy opera-
tion manageable (11).

The degree of complexity of a descriptive model
is usually dependent on the nature of the transduc-
tion process through which it is formed (11). This
is not the case with constructed models. Here the
complexity is up to the investigator, who must use
good judgment. A simple model offers certain ad-
vantages: It can be mentally manipulated to offer
rapid insight into its value and it allows ease of de-
scription and communication, which also makes it a
worthwhile teaching device. However, too simple a
model results only in weak, gross results that may
not be adequate for the investigator interested in
new findings of substance (11). At the other ex-
treme, one may consider models of such great speci-
ficity and resulting complexity, where it becomes
necessary to collect and manipulate vast amounts of
data in order to reach even a most modest conclu-
sion. Here, practical limitations of cost in both time
and money come into play. Nowadays, the availabil-
ity of computer facilities permit consideration of
models of increased sophistication. All in all, there
is a subtle and powerful value in simplicity since a
proven simple model leaves open a wider choice of
directions to ‘explain’ an increased domain of the
real world. An overly specific model may satisfy a
present need, but by its very nature prevent further
expansion into new alternatives (11).

MODELING IN BIOMEDICAL RESEARCH

Kacser (9) distinguishes between two types of mod-
els: heuristic and conceptual. A heuristic model is one
that makes statements, more or less precise, that lead
to further experiments. It contains statements about
the outcome of future experiments or observations
whereby it may be tested for its applicability. Concep-
tual models are alleged to have none of these char-
acteristics, but are merely frameworks into which
existing information is placed and arranged in a cer-
tain manner. There are no clear demarcation lines
between these two types of models, because it will
depend on the state of experimental techniques
whether certain consequences of the model are or
are not verifiable experimentally.

Rosenbleuth and Wiener (3) state that a material
model is the representation of a complex system by
a system that is assumed to be simpler and to have
some properties similar to those selected for study in
the original complex real-world system. A formal
model is a symbolic assertion in logical terms of an
idealized relatively simple situation sharing the struc-
tural properties of the original factual system. Mate-
rial models are useful because they: I) may assist
scientists in replacing a phenomenon in an unfamil-
iar field by one in a field with which they are more
at home, and 2) may enable the execution of exper-
iments under more favorable conditions than would
be available in the original system. Sometimes the re-
lation between the material model and the original
system may be no more than a change of scale (e.g.,
the use of small experimental animal model vs. large
animal subject) or of space or time (e.g., the use of
Drosophila in genetic studies) (3).

Finally, a useful classification of models of biomed-
ical relevance was provided by Yates (4): I) heuristic
models, which include loose talk (words and stories);
metaphors and definitions; classifications and corre-
lations; pictures and diagrams; and statistical repre-
sentations of data. Statistical models refer to
properties of data but do not directly assert anything
about the structure of the system that produces the
data. 2) Equivalent network models: these include a) an-
alogs (having functional similarity) such as physical
devices (machines) or formal (empirical) equations
that represent a function classified as similar to that
of the system of the real world of interest. ‘Similarity’
depends on the purpose of the modeler (also, vide
infra). If quantitative similarity is chosen as the cri-
terion, the issue becomes a statistical one, after a spe-
cific criterion is chosen for ‘goodness of fit’ of the
two functions. b)) Homologues (structural as well as
functional similarity) attempt to provide one-to-one
structural similarities that lead to one-to-one func-
tional similarities between model and the real world.
Here the question of validity rests both on bookkeep-
ing (does the model output match the system output
to criterion closeness, as with analogs?) and on pre-
diction (does the model produce appropriate out-
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puts, according to the criterion of fit, when tested
against a new data set not used in its construc-
tion?) (2).

Equivalent network models are of research inter-
est, but each model describes only a special case. It
is a working hypothesis, not a theory (2). In fact, it is
usually composed of equations of convenience, even
if it is a homologue. Because analogs or homologues
are not complete representations of physical theory,
they may inadvertently escape the restraints of phys-
ical theory. In that sense, they are ‘unscientific’ (2).
Equations of convenience are not fundamental in
any sense, no matter how well they perform.

FUNDAMENTAL TECHNIQUES OF
MODELING

A general understanding and familiarity with the sci-
entific method offers a foundation for fruitful spe-
cific endeavors in biomedical modeling and research.
Figure 1 illustrates the scientific method (11). The
real world is represented by observed data. To make
some estimate of the as yet unmeasured region of the
real world, a model is selected or constructed that is
consistent with the real-world data obtained at mea-
surement. Generation of this model may be called
the semantic link (the study of the relations of signs to
the objects represented). The chosen model is then
manipulated experimentally to result in a set of ob-
servable consequences. This process may be called
the syntactic link (the study of the relations between
signs and other signs). The solution is then related
to some inferred real-world behavior. This may be
termed the pragmatic link (the study of the relations
between signs and the uses of signs). The process is
incomplete without investigation of the validity of
such inference. Serious error may be introduced at
each of the above links (11). Because this chain of
events is crucial to the act of modeling, a detailed
discussion of individual links follows.

THE SEMANTIC LINK

Induction is that logical process that takes specific
cases and derives from them what appear to be gen-
erally applicable governing rules (11). The genera-
tion of a hypothesis—the formulation of any model—
is just such a process. The semantic link is concerned
with the description of some specific aspect of the
real world in such a way as to generate a model that
is then presumed to remain valid over a wider do-
main than that identified by the available empirical
evidence. The data provided to construct the model
may originate from natural observations or per-
formed experiments.
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Figure 1. The scientific method. Adapted from Fogel (11).

The proper description of the real world in terms
of a model often offers pitfalls and unforseen diffi-
culties; three issues of relevance require further elab-
oration. First, an intrinsic problem remains for data
from both natural observations or performed exper-
iments: the transducer used to sense the real world
introduces a certain amount of error into the data
obtained (11). Therefore, it is advisable to remove as
much of this error or noise before model selection/
construction. This introduced noise is of two general
types: deterministic and stochastic (11). The measured
real world—that is, the real world as we know it—is
always noisy. Not only are we incapable of measuring
precisely, but we cannot be sure that the very act of
measuring does not change that which is being mea-
sured. This fact is borne out well in the microscopic
world, where Heisenberg’s ‘principle of uncertainty’
gives a lower limit to possible error (see ref 17). It is
not within human capability to ever know whether all
of the error in the observed real world is from the
process of measurement or not. This uncertainty is
inherent; the finer the observation, the greater the
relative noise content of the measured data, and the
greater the difficulty in attaining an improved
amendment of the model. In fact, this logic leads to
the conclusion that the ‘truth’ concerning the be-
havior of the real world can never be formulated in
exact statements (11). It stands to reason, even with-
out embarking on a theosophical discussion, that the
search for knowledge of the real world is necessarily
unbounded.

A second compounding factor is that all real-world
transduction is nonlinear (17). Some degree of non-
linearity can be incorporated into a model in order
to maintain some level of precision even under ex-
pected saturation characteristics. Yet there always re-
mains some additional nonlinearity that cannot be
formulated into any finite descriptive model. This is
one more reason why a model cannot fully describe
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the real world nor can the extracted data be without
error. The model selection and construction must be
predicated on the best available known description
of the real world (17).

Third, because all empirically observed behavior is
stochastic in nature (i.e., there is some essential vari-
ability in all processes that are available for measure-
ment), the investigator can introduce statistical
techniques to assess aspects of this variability and take
these into account in the construction of his model.
However, the statistical behavior itself is constantly
changing, so that there remains some essential error
even in the most precise statistical description (17).

The semantic link is characterized by the forma-
tion of a model (albeit ‘noisy’ or ‘false’ to some ex-
tent) to describe the real world. In its ideal role of
providing a coherent, parsimonious description of
nature, a model is necessarily a simplified represen-
tation of the original (7). Were this intrinsically lesser
representation of no use, complete replication of the
object modeled would be necessary and the idea of
‘model” would lose all meaning. Thus, systems are
modeled in a useful manner by constructs that have
some functional equivalence but are not identical in
detail; the essential properties of the original are rep-
resented whereas the obscuring irrelevancies are ig-
nored (7). However, this imposes a requirement for
selection that lies at the heart of the modeler’s di-
lemma. There are two distinct philosophies in the
selection of parameters for model construction, both
affecting the simplicity/complexity (vide supra) of the
resultant model (7) and each with important appli-
cation: I) A very large number of properties and fea-
tures are reproduced with high accuracy. Initially the
model is overspecified, and the tacit intention is to
simplify if and when it seems reasonable to do so. 2)
A more limited set of properties is used, but the re-
strictions have been made on the basis of an a priori
set of assumptions as to the most significant ones. It
is assumed in such ‘minimum-parameter’ models
that the essential features have been retained; the
tacit intention is to introduce more complexities if it
becomes necessary to do so. There are advantages
and disadvantages to each approach. Models of the
first type are more complete, but are more difficult
to realize and more costly. Models of the second type
are more amenable to analysis, but are in greater dan-
ger of important omissions. Although a more nearly
complete model can contain the features of several
minimum-parameter models, the addition of acces-
sories to the latter is equivalent to the changing of
parameters in the former (to model different situa-
tions) (7).

There are situations in which the data available to
describe the real world are inadequate for full quan-
titative description of a model. Berman (18) pro-
posed a technique to aid in model building under
these circumstances, which involves the use of mini-
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mal system perturbation experiments for parameter
manipulation in order to develop unique models.

A model must also be suitable to the specific intent
of the investigator: there must be recognition of a set
of criteria measures that allow evaluation of the
model (11). This system intent must be included as
part of the model in some directly definable/com-
putable form. Adjectives such as ‘best’, ‘most effi-
cient’, and ‘simplest’ blind the unwary researcher
from attaining knowledge of the exact intent and
purpose of the model. Too often, adequate models
are offered for real-world problems, but no specific
purpose has been designated that the subject system
is intended to fulfill (11). Identification and use of
an appropriate set of weighted criteria can yield a
worthwhile evaluative measure.

In constructing a model, therefore, it is necessary
to define an ‘adequate’ model (19). In this regard,
the engineer is usually much better than the biolo-
gist. The action of one quantity on another is often
known, but if it is not, the engineer can usually take
the model apart and measure the response of each
element to suitably chosen provocations. For biomed-
ical researchers, it is usually technically difficult or
impermissible to measure experimentally the sepa-
rate dependencies that constitute the model and its
similarity to the real world. Most systems of interest
to biologists involve nonlinear relationships. In such
cases, no general analytical methods are available to
check the adequacy of a model, but solutions may be
sought by the use of physical models or analogs with
parameters that can be adjusted until the behavior of
the model corresponds with the observed behavior of
the system. It is essential to test and modify unceas-
ingly in order to obtain convergent qualitative and
quantitative agreement between the model and what
is being modeled (parameter sensitivity analysis
(15)). Adequacy of the model is inferred as long as
there is continual testing for appropriateness and
there is no serious violation of physiological evidence
(7). Analytical mathematical methods are available
for linear systems, some aspects of which may also
suggest approaches to analogous problems in bio-
medical research (19).

THE SYNTACTIC LINK

The syntactic link of the scientific method is con-
cerned with the manipulation of the model into some
form that may be interpreted as a general solution
(11). That s, the syntactic link must be accomplished
in such a way as to facilitate the pragmatic link that
is to follow. The manipulation of the model may be
simple or extremely difficult, depending on the par-
ticular problem being investigated. What is certain is
that it is always deterministic as well as being ‘public
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information’: any investigator should find the same
solution to a given problem (11).

Once a model is realized, three kinds of action
must be taken (7): I) preliminary validation by test-
ing the model’s accuracy. This is mandatory, and is
achieved by matching the model’s behavior with sci-
entific observations. Successive refinements of the
model may then lead to convergence to an accurate
and revealing abstraction. 2) With validity tentatively
established, one may attempt to discover novel prop-
erties of the model (operations not considered ex-
plicitly in the original design). Although such
‘discovered’ properties are implicit, due to the choice
of model parameters, it is most unlikely that all of
them will have been foreseen. If these new properties
also match those known to exist for the modeled sys-
tem, or if on subsequent testing they are shown to
have successfully predicted functions not previously
known, then the model’s validity is given additional
support. 3) More speculatively, but often of great
value, the model can test hypotheses and explore
their consequences more rapidly and economically
than direct scientific measurement permits. In this
way, many theoretical ideas can be tested and evalu-
ated. Furthermore, such preliminary observations
can reveal the necessary consequences of a particular
hypothesis, which in turn can be used as a basis for
planning more effective scientific experiments (7).

Often the complexity of a fully descriptive elabo-
rate model may be temporarily disregarded during
its manipulation in order to examine only the limi-
ting conditions (11). Evaluation of extremes may pro-
vide insight into the chances of success with more
complete and costly manipulation of the model that
yields a full solution. In practical problems of evalu-
ation, it is sometimes beneficial to sidestep the ana-
lytic solution, favoring the insertion of estimated
numerics. The resulting approximation is not pre-
sumed to be a solution, yet it serves to form a frame
of reference for the results of a more detailed and
complete analysis (11).

It is often possible for the investigator to follow in-
tuitively the model as it passes through various stages
of manipulation. This is especially true for models
that maintain a high degree of analogy with their
real-world counterpart. But great care must be taken
sometimes to avoid pitfalls that can mislead or, even
worse, lead to anomalies that fall outside the logic of
common experience (11). Naturally, every effort
should be exerted to avoid errors or mistakes in car-
rying out the required manipulation of the model.

THE PRAGMATIC LINK
The pragmatic link is the inverse of the semantic link,

being accomplished through use of the abductive
logical process (11). The constructed model, which
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is presumed to be properly chosen and manipulated,
is examined to reveal specific values relevant to the
problem at hand. In this regard, the process may be
considered as descriptive; however, here what is be-
ing described is some form of the model rather than
the real world. Specific data are extracted from the
transformed model (now in the form called a general
solution) under the tacit assumption that, if the
model is truly representative of the predicted real
world, then excitation of the real world in this certain
manner would yield that particular resultant (11).

A complete model must include a clear definition
of its domain of validity (11). Since only a finite set
of data points was available for its construction, itnec-
essarily follows that the model may be valid only over
some finite domain. It is not always clear to investi-
gators that the particular point in which they are in-
terested may not remain under the ‘awareness’ of the
model, so that the abduction, even though straight-
forward, may prove of limited value. Even if the
model corresponds exactly with the given data points
of the real world, it does not necessarily follow that
interpolated values remain valid unless an attribute
of continuity or some similar constraint has been em-
bedded within the model itself (11).

Independence of parameters or characteristics is
not exactly realizable in the real world. This assump-
tion greatly simplifies models and is an extremely use-
ful analytic device (11). Under certain circumstances,
however, it allows the neglect of important condi-
tional relations among parameters that can change
the very nature of the achieved solution.

The realization that statistical behavior governs the
real world dictates that traversing the pragmatic link
be accomplished by techniques of statistical infer-
ence (11). The abduced values must be accompanied
by some statement as to the level of confidence with
which these extracted values may be stated. The the-
ory of probability provides the tools that bound in-
ference. Investigators should expect more than some
degree of error in their inferential conclusions, even
when taken from a well-constructed and manipulated
model (11). Indeed, it might be asked whether we
can draw any conclusions from a model (17). In gen-
eral, clearly we may not. Even with a mathematical
law, every logical deduction is open to experimental
verification; if it is verified, the law is discarded as
being inapplicable. A model may point the way, but
it must not lead us (17). The exception is the statis-
tical model, where we may make inferences in terms
of probability statements about the real world.

Probably the most important consequence of the
pragmatic link is evaluation of the interpreted data
through access to new empirical evidence about the
real world (11). Throughout scientific investigation,
there must remain a ‘‘conservative spirit that at-
tempts to revalidate the gains accomplished at every
possible opportunity’” (11). Until actual measured
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data back up theoretical predictions, these predic-
tions remain in the world of uncertainty. Their use
for the estimation of further data or the construction
of new models may initiate a cascade of increasingly
significant errors. No matter how carefully created or
complete a theoretical analysis may be, there always
remains the danger that such scientific extrapolation
may be logical but not at all descriptive of the real
world. The scientific method frowns upon ambiguous
statements and models. There is only one cure for
this problem, and that is a return to investigation and
measurement of the real world (11). Rosen (20, 21)
has addressed in detail the nature, limitations, and
dangers of extrapolation of the results of modeling
to the real world. A proper understanding of the
principles of this extrapolatory action in modeling is
necessary.

Yates (4) has provided a simple but useful overview
of the fundamental logical relation between an imag-
inary real-world system (A), its model (B), the re-
sponse (C) to model manipulation, and a response
(X) if an analogous manipulation were later to be
applied to the real system (A). There are three pos-
sible outcomes: 1) It is found that (X) is the same as
(C). This case is the one popular with modelers: the
data ‘fit’ the predictions of the model. 2) It is found
that (X) is different from (C). This is the most useful
outcome, because it suggests that our knowledge of
(A) is incomplete and a search is necessary for a dif-
ferent form of the real world (one that we were not
aware of and that would produce the (X) obtained).
3) (X) is not determined, and instead it is assumed
that it would be the same as (C). This is the classical
syllogism, which is trivial/irrelevant here because it
requires that we have already proved (A) = (B); this
is the whole point of the test (i.e., should a model
thoroughly realize its purpose, the original real world
could be grasped in its entirety and a model would
be unnecessary). Note the paradox: when the real
world does what the model predicts, we have proved
nothing logically (an insight into the real world is not
obtained this way). Thus, we see that models satisfy
logic when they fail (‘‘but satisfy the lust of the mod-
eler when they succeed!””) (4). Itis hard to lose when
you model: if an experiment produces results that
your model predicted, you feel good; if it does not,
you learn something new (4).

LIMITATIONS, PITFALLS, AND CRITICISMS
OF MODELING

Many potential pitfalls in the act of modeling have been
alluded to already. The limitations of the modeling pro-
cess as applied to biomedical systems may be summa-
rized (6). I) The process is subjective. 2) Models
represent isolated systems, whereas the real systems be-
ing modeled are rarely isolated or even isolatable in
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principle. 3) Minimal-parameter models may not be ex-
planatory to one’s satisfaction because they may neglect
properties that are emphasized in more traditional
physiological work. Thus, it may be necessary to ‘over-
model’ in the mathematical sense, to provide a model
that has appeal to a community of scholars who have
arrived at their understandings of the real world
through a different route. 4) Models are logically
strongest when they fail, but psychologically most ap-
pealing when they succeed. 5) Physiological models al-
most always deal with special cases and have only
limited generalizability. Results of modeling should
never be extrapolated directly to a clinical setting, but
used only as a framework within which clinical phe-
nomena can be better understood (22). 6) Science is
a community activity, and to be part of science, a model
must be communicable. Many models are imple-
mented in forms that are difficult to comprehend by
any but the modeler himself. 7) Physiological models
are not usually strongly based on natural law as defined
in physics. Thus, their scientific status is weak.

Not all models are useful for a variety of reasons,
which can be appreciated from the discussion above.
Three significant reasons deserve repeating (3). 1) If
they are weak and trivial they might be useless, i.e., a
gross analogy to the real world may not be scientifi-
cally fruitful. 2) If they do not suggest any experi-
ments, then they are superfluous. 3) If they are more
elaborate and less readily amenable to experiment
than the real world, then their availability and use do
not represent progress.

Despite widespread applications, the role of mod-
els and modeling is often controversial and ill under-
stood. One interesting criticism denies the value of
any model that is not ‘primary’ (i.e., a direct repre-
sentation of the real world) (7). It is said that no
“model of a model’’ can really add anything valid to
scientific knowledge (7). However, it is difficult to
conceive of a genuinely primary model. It seems clear
that all models as we know them are secondary (i.e.,
that they are models of models); our conceptions of
our environment are themselves models and, indeed,
are structured from more basic models (7).

Finally, and of relevance to the biomedical re-
searcher, it is in the realm of biological regulation/
control/feedback that models have been disap-
pointing (4). Apart from the usual inherent com-
plexities of the systems involved (i.e., many internal/
component elements) (23), biological regulators of-
ten depend more on saturating mechanisms or other
nonlinearities than on simple feedback.

COMMUNICATING THE RESULTS OF
EXPERIMENTAL MODELING

The characteristics that are welcome in a paper on
modeling have been summarized by Yates (6), and
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apply specifically to the publication of articles making
use of mathematical models in biomedical/physio-
logical research. However, the spirit of these guide-
lines can be extended to encompass the many other
forms of modeling (animal, in vitro, computer, me-
chanical, etc.) at the disposal of the biomedical re-
searcher. A sound paper on modeling has the
following features. I) The model is presented with all
equations demonstrated in full; if a computer pro-
gram is used, this is also submitted and is made avail-
able to the reader. 2) All parameters of the model
are defined and their units made clear. 3) All equa-
tions are consistent in their dimensions and can be
verified by the reader. 4) Data from the real system
being modeled are offered to validate the model, and
criteria used to justify claims of goodness of fit of
model to data are given. 5) The domain of real time
wherein the simulation is intended to be valid is
given. 6) Any assumptions about structure, parame-
ter values, initial conditions, etc., are justified by care-
fully checked citations. 7) The model is clearly
presented, its interesting points are highlighted, and
its validation is properly documented. §) The content
does not show manifestations of the ‘reminiscence
syndrome’ (7). Early in a paper, the author may de-
scribe some outputs from models as being ‘reminis-
cent’ of this or that phenomenon. Toward the
middle of the paper, the word ‘reminiscent’ is omit-
ted in the apparent hope that the reader will infer
equality between the model’s performance and the
phenomenon. By the end of the paper, equality is
overtly implied. Skillful use of the excluded middle
is often seen. 9) Models are hypotheses. Therefore,
for effective inference, the ideal paper on modeling
would offer two different models, each of which can
be rationalized according to current knowledge but
can predict significantly different outcomes of a (crit-
ical) experiment not used in their creation. The dif-
ferent predictions would be reported, along with the
results of the same experiment performed on the real
system. The possibilities then would be that one
model fails and one succeeds, or they both fail. In
either case, the utility of models for hypothesis rejec-
tion is demonstrated and the reader learns some-
thing new (6).

CONCLUSIONS

With growing emphasis being placed on the infor-
mation processing aspects of biomedical investiga-
tion, theoretical and experimental studies assume
increasing importance. In many instances, however,
there are questions that appear to be unanswerable
by present experimental techniques; in such cases,
models can usefully augment direct scientific exper-
imentation. The essential ingredient of the scientific
method is the use of models. Good modeling is more
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likely to be achieved by following the rules of good
thinking (6). However, the ideal model cannot be
achieved. Partial models, imperfect as they may be,
are the only means developed by and available to sci-
entists for understanding the universe (3). This state-
ment does not imply an attitude of defeatism but the
recognition that the main tool of science is the hu-
man mind, and the human mind is finite (3). This
notwithstanding, the advances obtained so far sug-
gest that experimental modeling may be expected to
exert an increasing influence on the course of bio-
medical research and progress.
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